Activity

Suppose that a zombie outbreak has started. Each day a zombie can infect one more person with the zombie virus, turning them into a zombie as well. For the activity, also assume that no zombies get killed.

- a.) On day 0 there is one zombie. On day 1 he infects another and there are now 2 zombies. How many zombies will there be on day 4? 74=16
- b.) How many zombies will there be on day 7? 7 = 128
- c.) Can you create a function that tells you how many zombies there are for each day?

On Day X there will be 2x zombies.

d.) How will the above numbers be effected if a zombie can infect 2 people per day?

On Day & there will be 3x

Further Questions: What happens if we start with more than one zombie? Is there a way to tell on what day a certain number of zombies has been reached?

Exponential Function with base a is a function of the form

where x is any real number and a is a real constant such that a > 0 and $a \neq 1$.

Q: Why can't a = 1? Then we have constant function.

Q: Why can't a < 0? Then ∞ is n't defined everywhere. Ex: Let $f(x) = 4^x$ and $h(x) = (\frac{1}{3})^x$. Evaluate f(3/2) and h(-2).

f(3/2)=(3/2=2=8 h(-2)=(=1)2=3=9

Domain of Exponential Functions

The domain of $f(x) = a^x$ for a > 0 and $a \neq 1$ is the set of all real numbers, \mathbb{R}

Q: How do we get $2^{\sqrt{3}}$? Approximate with rational exponents.

Graphing Exponential Functions

Ex: Graph $f(x) = 2^x$ and $q(x) = (1/2)^x$

Properties of Exponential Functions

The exponential function $f(x) = a^x$ has the following properties:

- i) The function f is increasing for a > 1 and decreasing for 0 < a < 1.
- ii) The y-intercept of the graph of f is (0,1).
- iii) The graph has the x-axis as a horizontal asymptote.
- iv) The domain of f is $(-\infty, \infty)$ and the range of f is $(0, \infty)$
- v) The function f is one-to-one.

Exponential Transformations

If $f(x) = a^x$ is an exponential function, then the function $g(x) = b \cdot a^{x-h} + k$ is a transformation of the graph of f.

Ex: Graph $y = 2^{x-3}$ and $f(x) = -4 + 3^{x+2}$.

Down 4, left ?

Exponential Equations

Because exponential functions are one-to-one we have that: For a > 0 and $a \neq 1$

if
$$a^{x_1} = a^{x_2}$$
, then $x_1 = x_2$

Ex: Solve $4^x = \frac{1}{4}$ and $(\frac{1}{10})^x = 100$

Compound Interest

Similar to the zombic problem, if money is left in a bank, your interest will earn interest and so on so that the longer the money stays the more you earn.

Formula: If a principal P is invested for t years at an annual rate r compounded n times per year, then the amount A, or ending balance, is given by

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Ex: Find how much money you have in the bank after 3 years if you started with 20,000 with an A=70,000 (1+.06)3.365 interest rate of 6% compounded daily.

Q: What would happen if you compound continuously? **Def:** $e = \lim_{n \to \infty} (1 + \frac{1}{n}) \approx 2.718281828459$

Def:
$$e = \lim_{n \to \infty} (1 + \frac{1}{n}) \approx 2.718281828459$$